Affiliation:
1. Lab of Nanomedicine and Omic‐based Diagnostics Institute of Analytical Chemistry Department of Chemistry Zhejiang University Hangzhou 310058 P. R. China
2. Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province School of Chemistry and Chemical Engineering Zhejiang Sci‐Tech University Hangzhou 310018 P. R. China
Abstract
AbstractSuperficial melanoma is the deadliest form of skin cancer without desirable clinically therapeutic options. Nanozymes, artificial nanomaterials with physicochemical performance and enzyme catalytic properties, have attracted considerable attention for antitumor therapy. However, the therapeutic efficiency of nanozymes is vulnerable to the tumor microenvironment (TME) and delivery process. Herein, a microneedle (MN) patch that integrates porous silicon (PSi) loaded with dual nanozymes is devised to bidirectionally regulate TME and accurately deliver nanocomplex to initiate ferroptosis for melanoma treatment. Benefitting from the channel confinement effect of PSi, the copper‐doped graphene quantum dots and palladium nanoparticles coloaded PSi (CuGQD/PdNPs@PSi) exhibit synergistic effect with enhanced mimicking peroxidase and glutathione oxidase activities, which are ≈2–3‐fold higher than those of monoconfined nanozyme or nonconfined nanozyme complexes. Additionally, the synergistic catalytic performance of CuGQD/PdNPs@PSi can be improved via photostimuli hyperthermia. The CuGQD/PdNPs@PSi can induce ferroptosis manifested by upregulation of lipid peroxides and inactivation of glutathione peroxidase 4. Furthermore, loading of nanocomplexes into MNs for administration resulted in a satisfactory melanoma growth inhibition of 98.8% within 14 days. Therefore, MNs encapsulated with CuGQD/PdNPs@PSi can provide a potentially nanocatalytic strategy for ferroptosis‐inducing tumor treatment while also meeting the medical needs of eradicating superficial tumors.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献