Affiliation:
1. The Second Affiliated Hospital, School of Medicine South China University of Technology Guangzhou 510006 P. R. China
2. School of Biomedical Sciences and Engineering National Engineering Research Center for Tissue Restoration and Reconstruction and Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology Guangzhou 510006 P. R. China
3. Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education School of Materials Science and Engineering South China University of Technology Guangzhou 510006 P. R. China
Abstract
AbstractPancreatic ductal adenocarcinoma (PDAC) presents a formidable global health challenge. Targeting genetic aberrations, particularly KRAS and TP53 mutations, remains a critical challenge in PDAC treatment. Herein, it is demonstrated for the first time that electron‐rich aromatic pyrrole derivatives can be transformed into red‐to‐near‐infrared emissive radical cations in an acidic buffer, efficiently targeting mitochondria and triggering mutant p53 (mutp53) degradation. Leveraging the positive charge characteristic of radical cations (P6•+), a bifunctional nanoparticle is successfully engineered by combining P6•+ with KRAS siRNA. P6@siKRAS simultaneously induces mutp53 degradation and the oncogenic KRAS downregulation, thereby abrogating gain‐of‐function effects by mutp53 and inhibiting downstream signaling pathways regulated by KRAS, leading to significant suppression of tumor growth, invasion, and drug resistance. Consequently, P6@siKRAS demonstrates remarkable therapeutic efficacy in both the p53‐KRAS‐double‐mutated pancreatic cancer model and the LSL‐KrasG12D/+; LSL‐Trp53R172H/+; Pdx‐1‐Cre (KPC) mice model. Moreover, the down‐regulation of mutp53 and KRAS by P6@siKRAS not only inhibits tumor growth but also substantially remodels the tumor microenvironment, recruiting and boosting the infiltration of anti‐tumor immune cells, thereby augmenting the anti‐tumor immune response. This study showcases the development of mutp53‐degrading functional gene carriers, offering a promising and innovative therapeutic strategy for tackling p53‐KRAS‐double‐mutated pancreatic cancer.
Funder
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献