Combining Janus Separator and Organic Cathode for Dendrite‐Free and High‐Performance Na‐Organic Batteries

Author:

Wu Yan1,Wang Xingchao1ORCID,Zhang Fei1,Hai Lijuan1,Chen QiHua1,Chao Cuiqin1,Yang Aikai2,Sun Ying3,Jia Dianzeng1

Affiliation:

1. State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources Key Laboratory of Advanced Functional Materials Autonomous Region Institute of Applied Chemistry College of Chemistry Xinjiang University Urumqi Xinjiang 830046 P. R. China

2. Institute of Energy and Climate Research Materials Synthesis and Processing (IEK‐1) Forschungszentrum Jülich GmbH 52425 Jülich Germany

3. Xinjiang Uygur Autonomous Region Product Quality Supervision and Inspection Institute Key Laboratory of Improvised Explosive Chemicals for State Market Regulation Urumqi Xinjiang 830011 P. R. China

Abstract

AbstractThe growth of Na‐dendrites and the dissolution of organic cathodes are two major challenges that hinder the development of sodium‐organic batteries (SOBs). Herein, a multifunctional Janus separator (h‐BN@PP@C) by using an interfacial engineering strategy, is proposed to tackle the issues of SOBs. The carbon layer facing the organic cathode serves as a barrier to capture dissolved organic materials and enhance their utilization. Meanwhile, the h‐BN layer facing the Na anode possesses high thermal conductivity and mechanical strength, which mitigates the occurrence of localized‐temperature “hot spots” and promotes the formation of a NaF‐enriched SEI, thereby suppressing dendrite growth. Consequently, the Janus separator enables a stable Na plating/stripping cycling for 1000 h at 3 mA cm−2. Equipped with the Janus separator, organic cathodes including dibenzo[b,i]thianthrene‐5,7,12,14‐tetraone (DTT), pentacene‐5,7,12,14‐tetrone and Calix[4]quinone cathodes demonstrate high capacity and remarkable cycling performance. In particular, the DTT exhibits a bipolar co‐reaction storage mechanism and achieves an ultrahigh capacity (≈342.6 mAh g−1), long‐term cycling stability (capacity decay rate of 0.15% per cycle over 550 cycles at 500 mA g−1) and fast kinetics (1000 mA g−1≈2.8 C). This study offers a straightforward, effective, and promising solution to address the challenges in SOBs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3