Unveiling the Synergistic Potential of Laser Chemical Solid‐Phase Deposition of Atomic Platinum‐Metal Layer on 2D Materials for Bifunctional Catalysts

Author:

Yi Wendi1,Yu Ruohan2,Jiang Haoqing3,Wu Jinsong2,Cheng Gary J.145ORCID

Affiliation:

1. The Institute of Technological Sciences Wuhan University Wuhan Hubei 430072 China

2. Nanostructure Research Centre (NRC) Wuhan University of Technology Wuhan Hubei 430070 China

3. The Institute of Laser Manufacturing Henan Academy of Sciences Zhengzhou Henan 450046 China

4. School of Industrial Engineering Purdue University West Lafayette IN 47907 USA

5. School of Materials Engineering Purdue University West Lafayette IN 47907 USA

Abstract

AbstractThe formation of high‐density atomic metal layers on 2D materials enhances catalytic device development by providing a large surface area, precise control over active sites, and enhanced reactivity. Here, pulsed laser‐induced chemical solid‐phase deposition (LCSD) is introduced for achieving high‐density atomic metal layers. By leveraging high‐density plasma generated via pulsed nanosecond laser irradiation of thin salt layers on 2D materials, atomic‐scale metals are deposited onto abundant nucleation sites, creating dense atomic‐metal layers. This study engineers layered double hydroxide (LDH) materials layered with atomic platinum‐based alloys, exhibiting exceptional catalytic activity for overall water splitting. LDH's excellent oxygen evolution performance combined with remarkable advances in hydrogen evolution catalysis are achieved. Introducing a second element improves Pt layer dispersion and uniformity, resulting in extraordinary Pt distribution density and minimal overpotential. The LDH and Pt‐metal combination creates powerful synergistic effects, significantly enhancing catalytic performance and enabling superior bifunctional catalysts for water splitting. LCSD effectively fabricates stable nanocomposites designed for electrocatalytic applications, leveraging unique structures of atom‐scale metal‐supported composite 2D materials, enhancing overall electrocatalytic performance. This breakthrough impacts energy conversion and environmental protection, broadening electrocatalysis and revolutionizing atom‐scale metal‐supported composite 2D materials. Its practical applications span various areas, contributing to sustainable energy solutions and environmental preservation.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3