Mechanical Computing with Transmissive Snapping of Kirigami Shells

Author:

Yang Yi1ORCID,Feng Jin2,Holmes Douglas P.3ORCID

Affiliation:

1. John A. Paulson School of Engineering and Applied Sciences Harvard University 29 Oxford St Cambridge MA 02138 USA

2. Department of Mechanical Engineering Massachusetts Institute of Technology 33 Mass Ave Cambridge MA 02139 USA

3. Department of Mechanical Engineering Boston University 110 Cummington Mall Boston MA 02215 USA

Abstract

AbstractContinuum shape‐morphing structures with the capability to encode memory and execute logic operations have garnered significant interest for the development of mechanical systems with embodied intelligence and soft robots. Achieving the integration of memory and computing within a mechanical system necessitates building blocks that possess a range of tunable, metastable states. Prior efforts have been dedicated to constructing mechanical memory and logic through the exploitation of snap‐through instabilities in multistable structures. Typically, the creation of each logic gate demands a distinct structural design. Here, presents an unconventional design strategy that leverages a single kirigami architecture to perform and switch between multiple fundamental logic operations. By utilizing the kirigami architecture as the fundamental element, mechanical signal transmission is demonstrated and half‐adder computations are performed. It is envisioned that this design strategy can be applied to a wide range of materials and structures, and reduce the complexity of developing materials systems with embodied intelligence.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3