Affiliation:
1. State Key Laboratory of Catalysis Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
2. University of Chinese Academy of Sciences Beijing 100049 China
3. School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
4. Quzhou Institute for Innovation in Resource Chemical Engineering Quzhou 324000 China
Abstract
AbstractLithium metal is the most promising high‐energy‐density anode. However, it is incompatible with high‐voltage cathodes in ether solvents due to their narrow electrochemical window. Herein, fluoroethylene carbonate (FEC) co‐solvent is introduced to regulate the Li+ solvation structures in ether solvents, including cyclic ether (1,3‐dioxolane [DOL]) and linear glymes with different chain lengths (1,2‐dimethoxyethane [DME], diglyme [G2] and triglyme [G3]). The apparently different effects of ether solvents on solvation ability and interaction strength with FEC are revealed. FEC plays a diverse role and function in 1 m lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)‐ether/FEC electrolyte, thus relevant batteries perform distinct performances due to various ionic dynamics and solid‐electrolyte interphase. The Li+‐solvation structures are explored by Raman and nuclear magnetic resonance spectroscopies. Specifically, part of FEC molecules are inserted into the first solvation shell in 1 m LiTFSI‐DOL/FEC because of the weak solvation ability of DOL and strong interaction of DOL‐FEC, leading to few coordinated TFSI− and sluggish interfacial kinetics. In sharp contrast, FEC as a weak coordinated solvent almost exclusively occupies the second solvation sheath in 1 m LiTFSI‐glyme/FEC, favoring TFSI− coordination and rapid de‐solvation dynamics. Ultimately, the LiNi0.8Co0.1Mn0.1O2/Li battery in G2/FEC presents the most excellent performance, derived from abundant free‐FEC and rapid ionic kinetics.
Funder
National Natural Science Foundation of China
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献