Monolayer Oxidized‐MXene Piezo‐Resonators with Single Resonant Peak by Interior Schottky Effect

Author:

Jiang Chengming1ORCID,Peng Yan1,Tan Dongchen1,Zeng Lijun1,Huang Jijie2,Sun Nan1,Bi Sheng1,Tao Zhiyuan1,Guo Qinglei3,Han Xu1

Affiliation:

1. Key Laboratory for Precision and Non‐traditional Machining Technology of the Ministry of Education Dalian University of Technology Dalian 116024 P. R. China

2. School of Materials Engineering Purdue University West Lafayette IN 47907 USA

3. Department of Material Science and Engineering Frederick Seitz Material Research Laboratory University of Illinois at Urbana‐Champaign Urbana IL 61801 USA

Abstract

AbstractNanoelectromechanical systems (NEMS) of 2D nanomaterials are potent exploration devices for high‐sensitive mechanical coupling, mass testing, and biosensing. Nevertheless, the internal interference from the multiple resonant states easily causes the deviation and overlap of the target signal. Here, an oxidized‐MXene resonant system performs the unique response peak at the fundamental frequency f0,1 of 3.37 ± 0.04 MHz within the ultrawide frequency up to 400 MHz, due to the ferroelectric‐conductive structure. This unique resonant peak can effectively avoid the dispute of indistinguishable vibratal states. The resonator exhibits advanced performances with a large dynamic range of 70.41 ± 0.15 dB and low thermomechanical motion spectral density of . The molecular sensing mechanisms of the oxidized‐MXene system are systematically studied to achieve repeatable detection with high mass resolution (low to 8.00 ± 0.01 × 10‐19 g). These consequences can afford potential guidelines for the NEMS devices in terms of the credible and legible sensors for ultra‐accurate and interference‐free measurements.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3