Dielectric Elastomer Network with Large Side Groups Achieves Large Electroactive Deformation for Soft Robotic Grippers

Author:

Dou Xiaorong1,Chen Zheqi2,Ren Fuhao1,He Lijun1,Chen Jianxiong1,Yin Li‐Juan3,Luo Yingwu2,Dang Zhi‐Min3,Mao Jie1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering State Key Laboratory of High‐Efficiency Utilization of Coal and Green Chemical Engineering Ningxia University Yinchuan 750021 China

2. State Key Laboratory of Chemical Engineering College of Chemical and Biological Engineering Zhejiang University Hangzhou 310058 China

3. State Key Laboratory of Power System Operation and Control, Department of Electrical Engineering Tsinghua University Beijing 100084 China

Abstract

AbstractDielectric elastomer actuators (DEAs) face an acknowledged challenge: On the one hand, the majority of elastomers only achieve small electroactive deformation (<20%) in the absence of prestretch; on the other hand, rare elastomers capable of showing large electroactive deformation require relatively complicated processing and chemistry. This work addresses this challenge by fabricating an elastomer with a network of large side groups, which achieves a very large electroactive deformation (218%) without pre‐stretch. This elastomer can be rapidly and massively fabricated within a few min, by polymerizing a commercial monomer with a large alkyl side group. The large side groups in the polymer network repel each other and extend the load‐bearing strands, which results in a pronounced strain‐hardening behavior. This behavior helps the elastomer to get rid of electromechanical instability during actuation and hence to exhibit a large electro‐active deformation, a high energy density (>> human muscle), and a large output force (≈500 times self‐weight). the elastomer capable of manufacturing a soft electroactive gripper is demonstrated with large deformation, large force, and rapid response, which enables grasping fragile objects of various complex shapes in an agile away.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Ningxia Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3