Carbon Nanotubes/Graphene‐Skinned Glass Fiber Fabric with 3D Hierarchical Electrically and Thermally Conductive Network

Author:

Liu Mengxiong12,Yang Yuyao12,Liu Ruojuan12,Wang Kun12,Cheng Shuting2,Yuan Hao12,Huang Kewen12,Liang Fushun12,Yang Fan12,Zheng Kangyi12,Liu Longfei12,Tu Ce2,Wang Jingnan2,Gai Xuzhao2,Qiao Wang2,Wang Xiaobai2,Qi Yue2,Liu Zhongfan2ORCID

Affiliation:

1. Center for Nanochemistry Beijing Science and Engineering Center for Nanocarbons Beijing National Laboratory for Molecular Sciences College of Chemistry and Molecular Engineering Peking University Beijing 100871 P. R. China

2. Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation Beijing Graphene Institute Beijing 100095 P. R. China

Abstract

AbstractGraphene‐skinned fiber fabric is prepared by chemical vapor deposition (CVD) of continuous graphene on fabric, which enables conformal graphene coverage on fibers and inherits high electrical and thermal conductivity of graphene. However, in the fabric‐shaped configuration, high electrical and thermal contact resistances between fibers, and the lack of conductive and thermal pathways along radial direction of fibers limit the improvement of electrical and thermal conductivity. Herein, carbon nanotubes (CNTs), due to the 1D structure with excellent electrical and thermal conductivity, are introduced to build rich “bridges” to connect the isolated fibers to build new electron and phonon transport channels. Thus, the conceptual design of CNT/graphene‐skinned glass fiber fabric (CNT/GGFF) is creatively proposed and realized by a carefully designed CVD. Constructing the 3D electrically and thermally conductive network in CNT/GGFF leads to >90% decrease of sheet resistance, 4.5 times increase of tensile strength, and >70% decrease of thermal resistance compared with GGFF, making it promising for applications in composite materials, heat dissipation, and de‐icing. Moreover, the thermal resistance of CNT/GGFF exhibits temperature‐independent, extending applications to aviation and space because changes in thermal conductivity of traditional materials with environmental temperatures can adversely affect the thermal stability, reliability, and lifetime of aircrafts.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3