A Tale of Two Separation Properties: Bulk and Thin Films of Mixed Matrix Materials

Author:

Zhang Gengyi1ORCID,Shah Chintan Jayesh1,Lee Won‐Il2,Kisslinger Kim3,Esmaeili Narjes1,Bui Vinh T.1,Zhu Lingxiang45,Nam Chang‐Yong23,Lin Haiqing1ORCID

Affiliation:

1. Department of Chemical and Biological Engineering The State University at New York University at Buffalo Buffalo NY 14260 USA

2. Department of Material Science and Chemical Engineering Stony Brook University Stony Brook NY 11794 USA

3. Center for Functional Nanomaterials Brookhaven National Laboratory Upton NY USA

4. U.S. Department of Energy National Energy Technology Laboratory Pittsburgh PA 15236 USA

5. NETL Support Contractor Pittsburgh PA 15236 USA

Abstract

AbstractMixed matrix materials (MMMs) integrating excellent processability from polymers and distinct separation properties from nanofillers are of interest for membrane gas separations, and they are often made into freestanding films (>100 µm) to demonstrate superior gas separation properties. However, they are difficult to fabricate into thin‐film nanocomposite (TFN) membranes due to interfacial incompatibility between polymers and nanofillers. Here TFN membranes based on MMMs (as thin as 200 nm) are successfully developed comprising amorphous poly(ethylene oxide) (aPEO) and UiO‐66‐NH2 enabling strong hydrogen bonds between the two matrices. Increasing the UiO‐66‐NH2 loading unexpectedly decreases CO2 permeability in freestanding films, but it surprisingly leads to the best CO2/N2 separation properties in the membranes at a loading of 10 mass% (CO2 permeance of 2900 GPU and CO2/N2 selectivity of 48). Nanoconfinement significantly influences the morphological and gas separation properties of the MMM layer. The membrane with 10 mass% UiO‐66‐NH2 demonstrates mixed‐gas CO2 permeance of 1400 GPU and CO2/N2 selectivity of 76 in the presence of 1.2 mol% water vapor at ≈23 °C, surpassing Robeson's upper bound. The membrane also demonstrates stable CO2/N2 separation performance when challenged with real flue gas for 700 h continuously.

Funder

National Energy Technology Laboratory

New York State Foundation for Science, Technology and Innovation

U.S. Department of Energy

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3