Atomically Precise Bottom‐Up Fabrication of Ultra‐Narrow Semiconducting Zigzag BiP Nanoribbons

Author:

Zhou Dechun12ORCID,Feng Yisui3,Zhang Lei2,Gao Wenjin14,Li Heping3,Li Hui3,Zhou Miao145,Niu Tianchao1ORCID

Affiliation:

1. Hangzhou International Innovation Institute Beihang University Hangzhou 311115 China

2. Department of Physics National University of Singapore Singapore 117542 Singapore

3. Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China

4. School of Physics Beihang University Beijing 100191 China

5. Tianmushan Laboratory Hangzhou 310023 China

Abstract

Abstract1D semiconductors with atomically precise edge and well‐controlled width hold significant promise as channel materials for next‐generation electronics. Here a method to fabricate the narrowest zigzag‐edged bismuth phosphide (BiP) nanoribbons (NRs) is presented, achieving widths of three atoms (≈0.7 nm), through molecular beam epitaxy on bismuthene in a wide P coverage range. Using scanning tunneling microscopy and first‐principles calculations, it is revealed that these BiP NRs exhibit a blue‐phosphorene‐like structure, with a theoretical bandgap of 0.38 eV. Notably, first‐principles calculations reveal spin‐polarized states located on the zigzag edges, presenting an option for spintronics applications. Formation of these uniform BiP NRs is attributed to tensile strain from lattice‐registry confinement. During epitaxial growth, P clusters act dually as feedstock and catalysts, suggesting a self‐catalyzed growth mechanism. The bottom‐up strategy offers an effective approach for the atomically precise fabrication of 1D BiP NRs, paving the way for the creation of diverse low‐dimensional binary materials with tailored chemical and electronic properties, facilitated by selecting suitable elemental 2D materials as substrates.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3