High Energy Absorption Nacre‐Like Calcium Silicate Hydrate (C‐S‐H) Composite Toward Elastic Cementitious Materials

Author:

Liu Xin12ORCID,Feng Pan1,Agudo Cristina Ruiz2,Sun Huiwen3,Yu Xiaohan1,Avaro Jonathan4,Huang Jiale1,Hou Dongshuai3,Ran Qianping1,Hong Jinxiang1,Liu Jiaping1,Miao Changwen1,Cölfen Helmut2ORCID

Affiliation:

1. Jiangsu Key Laboratory of Construction Materials School of Materials Science and Engineering Southeast University Nanjing 211189 China

2. Physical Chemistry University of Konstanz Universitätsstraße 10 78457 Konstanz Germany

3. Department of Civil Engineering Qingdao University of Technology Qingdao 266033 China

4. EMPA Swiss Federal Laboratories for Materials Science and Technology Lerchenfeldstrasse 5 St. Gallen CH‐9014 Switzerland

Abstract

AbstractThe low toughness under the tension of cement and concrete materials has been a long‐standing issue for decades and it has become increasingly urgent to address in modern society due to the growing demand for the development of high‐performance and sustainable constructions. Manipulating calcium silicate hydrate (C‐S‐H), the main hydration product of Portland cement, which determines the mechanical properties of cementitious materials, is an attractive method for improving their toughness following a bottom‐up approach. Inspired by the microstructure of nacre, a high energy absorption C‐S‐H‐based composite with a highly ordered structure is fabricated by a designed ternary building block, in which exfoliated montmorillonite provides a template for the nucleation and growth of C‐S‐H generating the “brick”, and polyvinyl alcohol acts as a “mortar” binding all the building blocks together. With the hierarchical toughening strategy explored here, the obtained C‐S‐H composite achieves a remarkable energy absorption of 16.2 ± 2.6 MJ m−3, which surprisingly outperforms the ultra‐high toughness cementitious materials by a factor of 20–60 and is even higher than that of natural nacre and other nacre‐like composites. These findings not only provide valuable insights into enhancing the toughness of cementitious materials but also open possibilities for broadening potential applications of C‐S‐H.

Funder

National Natural Science Foundation of China

Department of Education of Shandong Province

China Scholarship Council

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3