Biomimetic Remineralization of Dental Hard Tissues via Amyloid‐Like Protein Matrix Composite with Amorphous Calcium Phosphate

Author:

Pang Yanyun123,Fu Chengyu4,Zhang Daixing5,Li Min123,Zhou Xinye123,Gao Yingtao4,Lin Kaiye6,Hu Bowen4,Zhang Kai123,Cai Qing5,Yang Peng4ORCID,Liu Yongchun4ORCID,Zhang Xu123

Affiliation:

1. School and Hospital of Stomatology Tianjin Medical University 12 Qixiangtai Road, Heping District Tianjin 300070 P. R. China

2. Institute of Stomatology Tianjin Medical University 12 Qixiangtai Road, Heping District Tianjin 300070 P. R. China

3. Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration 12 Qixiangtai Road, Heping District Tianjin 300070 P. R. China

4. Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University 620 West Chang 'an Street, Chang 'an District Xi'an 710119 P. R. China

5. State Key Laboratory of Organic‐Inorganic Composites Beijing Laboratory of Biomedical Materials Beijing University of Chemical Technology 15 Beisanhuan East Road, Chaoyang District Beijing 100029 P. R. China

6. Clinical Medical College of Tianjin Medical University 167 Xueyuan Road, Dagang, Binhai New Area Tianjin 300276 P. R. China

Abstract

AbstractNumerous remineralizing coatings aim to prevent or treat early enamel lesions and occlude exposed dentinal tubules (DTs). Nevertheless, the pace of remineralization is inadequate, and the mechanical robustness of the newly established mineral layer fails to match the inherent strength. In this study, a biomimetic mineralization strategy aimed at replicating key events in biological mineralization, specifically focusing on the organic–inorganic composite matrix, is proposed. The material utilizes Tris(2‐carboxyethyl)phosphine (TCEP), which serves a dual role: stabilized amorphous calcium phosphate (ACP) (ACP@TCEP) nanoparticles as its inorganic component, and catalyzing the cleavage of intramolecular disulfide bonds in poly(ethylene glycol) (PEG) grafted lysozyme (lyso‐PEG) to facilitate the formation of an amyloid‐like protein matrix composite with ACP (ACP@lyso‐PEG nanocomplexes). ACP@lyso‐PEG nanocomplexes can rapidly and efficiently form an enamel‐like remineralization layer on the surface of damaged dental hard tissue, reaching ≈4.205 µm thickness after 3 days of acid‐etched enamel. Furthermore, achieving a depth of DTs occlusion exceeding 60 µm after 5 days, using a simple immersion process. The resulting mineralized layer exhibits mechanical strength comparable to natural teeth. This study introduces a conceptual biomimetic mineralization strategy for effective enamel repair or DTs occlusion in clinical practices, and offers potential insights into the mechanisms of biomineral formation.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Tianjin Research Innovation Project for Postgraduate Students

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3