Modulating In‐Plane Defective Density of Carbon Nanotubes by Graphitic Carbon Nitride Quantum Dots for Enhanced Triiodide Reduction

Author:

Hou Siyi1,Yu Chang1,Song Xuedan1,Ding Yiwang1,Chang Jiangwei1,Liu Yingbin1,Chen Lin1,Wei Qianbing1,Zhang Xiubo1,Qiu Jieshan1ORCID

Affiliation:

1. State Key Lab of Fine Chemicals School of Chemical Engineering Liaoning Key Lab for Energy Materials and Chemical Engineering Dalian University of Technology Dalian 116024 China

Abstract

AbstractThe catalytic performance of carbon nanotubes has still been hindered by the intrinsic and limited in‐plane electrocatalytic active sites, with a focus on improving their catalytic activity by covalent modifications, which require the relatively high energy input to dissociate the in‐plane atoms and create the active sites. Herein, an effective route is developed to modulate the in‐plane defective density and electronic structure of multi‐walled carbon nanotubes (MWCNTs) by ultra‐small‐sized g‐C3N4 quantum dots (CNQDs) with abundant nitrogen species via π–π stacking. The non‐covalent bonded CNQDs on MWCNTs endow them with abundant catalytic active sites on the basal plane, still inheriting the intrinsic and fast electron‐transfer characteristics of MWCNTs. The optimized CNQDs/MWCNTs‐4 heterogeneous catalyst exhibits an optimal photoelectric conversion efficiency of up to 8.30% in probing reaction for triiodide reduction, outperforming the Pt reference (7.86%). The thermodynamic calculations further reveal that the CNQDs integrated on MWCNTs are capable of reducing the reaction energy barrier (ΔG) of the rate‐determining step from I2 to I and adsorption state I*. The present study provides an efficient and non‐covalent strategy to construct excellent carbon‐based catalysts with abundant active sites, which is also enlightening for the preparation and application of other carbon‐based catalysts.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3