Highly Stable Ladder‐Type Conjugated Polymer Based Organic Electrochemical Transistors for Low Power and Signal Processing‐Free Surface Electromyogram Triggered Robotic Hand Control

Author:

Zhou Zhongliang1,Wu Xihu1,Tam Teck Lip Dexter2,Tang Cindy G.1,Chen Shuai1,Hou Kunqi1,Li Ting1,He Qiang1,Sit Ji‐Jon1,Xu Jianwei3,Leong Wei Lin1ORCID

Affiliation:

1. School of Electrical and Electronic Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore

2. Institute of Sustainability for Chemical Energy and Environment (ISCE2) Agency of Science Technology and Research (A*STAR) 1 Pesek Road Singapore 627833 Singapore

3. Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore

Abstract

AbstractOrganic electrochemical transistors (OECTs) based complementary inverters have been considered as promising candidates in electrophysiological amplification, owing to their low power consumption, and high gain. To create complementary inverters, it is important to use highly stable p‐type and n‐type polymers with well‐balanced current. In this study, the electrochemical stability of p‐type ladder‐conjugated polymer‐based OECT is improved through an annealing process that maintains its doped‐state drain current from 76% to 105% after 4,500 cycles in ambient environment. Next an OECT‐based complementary inverter made from p‐type and n‐type ladder‐conjugated polymers (PBBTL and BBL) that possess ultra‐low power consumption (≈170 nW), high gain (67 V/V), and high noise margin (92%) with full rail‐to‐rail swing, is presented. Furthermore, its potential for amplifying the envelope of surface electromyography (EMG) for robotic hand control is demonstrated. The high variation in the output (0.35 V) allows the amplified EMG signals to be directly captured by a commercial analog‐to‐digital converter, which in turn controls the robot hand to grasp different objects with low delay and low noise. These results demonstrate the capability of OECT inverter‐based amplifier in future signal processing‐free human‐machine interface, particularly useful for prosthetic control and gesture control applications.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3