Design and Synthesis of Comb‐Like Bisulfonic Acid Proton Exchange Membrane with Regulated Microstructure

Author:

Wang Qian12,Sang Linjian12,Huang Lei12,Guan Jiayu12,Yu Huiting12,Zheng Jifu1,Zhang Qifeng1,Qin Guorui1,Li Shenghai12,Zhang Suobo12ORCID

Affiliation:

1. Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China

2. University of Science and Technology of China Hefei 230026 China

Abstract

AbstractThe design and synthesis of proton exchange membranes (PEMs) with controllable microstructure and sulfonation degree play a crucial role in enhancing their performance and expanding their application. In this study, the disulfonic acid monomer is designed and prepared to synthesize the comb‐like disulfonic PEMs with controllable ion exchange capacity. The results show that the side chain structure and more concentrated sulfonic acid groups facilitate the aggregation of sulfonic acid groups in the polymer, improve the microphase separation morphology of PEMs, and increase the ionic conductivity. The proton conductivity of the DS‐PXIDI‐60 membrane is approximately 300 mS cm−1. The PEMs with controllable microstructure are prepared by introducing comonomers, including 9,9‐dimethylxanthrene, biphenyl, and p‐terphenyl, with different reactivity, spatial structure, and solubility. Biphenyl is copolymerized to form a copolymer with an alternating structure, and 9, 9‐dimethylxanthrene is copolymerized to form a random copolymer. In addition, it is worth noting that p‐terphenyl is copolymerized to form a microblock structure of the copolymer, with more excellent comprehensive properties. DS‐PXITp‐60 exhibits better performance than Nafion 212 in redox­flow batteries and fuel cells. Therefore, such molecular design and synthesis strategies provide a reference guide for the development of high‐performance PEMs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Department of Science and Technology of Jilin Province

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3