Constructing Scalable Membrane with Tunable Wettability by Electrolysis‐Induced Interface pH for Oil–Water Separation

Author:

Gan Shaopeng1,Li Hui1,Zhu Xu1,Liu Xilu1,Wei Kangxing2,Zhu Lei1,Wei Baojun2,Luo Xiaoming3,Zhang Jianqiang2ORCID,Xue Qingzhong1ORCID

Affiliation:

1. State Key Laboratory of Heavy Oil Processing School of Materials Science and Engineering China University of Petroleum Qingdao Shandong 266580 China

2. College of Science China University of Petroleum Qingdao Shandong 266580 China

3. Shandong Key Laboratory of Oil & Gas Storage and Transportation Safety China University of Petroleum Qingdao Shandong 266580 China

Abstract

AbstractThe tunable wettability by pH‐stimulus has great potential in liquid adhesion, transport, collection, and separation due to its rapid response and wide control range. However, achieving pH‐regulated wettability on the selected region of material without acid–base contamination presents a distinct challenge for the existing methods. Here, a scalable conductive network membrane is prepared with switchable wettability by regulating interfacial pH. The generation and diffusion of interfacial pH on the selected region of the membrane are regulated through the confinement electrolysis process, which is adapted to both spatial arrangements of the conductive network and the electrical potential. By regulating the interfacial pH (>13), the wettability of the selected region can change from superhydrophobicity (Water contact angle = 150°) to superhydrophilicity/underwater superoleophobicity (Water contact angle = 0°) without additional reagent in 30 s under 15 V. Based on the switchable wettability and precise controllability, the prepared membrane can efficiently realize on‐demand oil–water separation (>99%) and in situ extraction‐back extraction. The membrane with switchable wettability is programable and free of acid–base contamination, which may have broad practical application potential in intelligent fluid‐related systems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3