Influence of MXene Interlayer Spacing on the Interaction with Microwave Radiation

Author:

Rakhmanov Roman12ORCID,Ippolito Stefano2ORCID,Downes Marley2ORCID,Inman Alex2ORCID,AlHourani Jamal12ORCID,Fitzpatrick James2ORCID,Gogotsi Yury2ORCID,Friedman Gary1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering Drexel University 3141 Chestnut St Philadelphia PA 19104 USA

2. A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University 3141 Chestnut St Philadelphia PA 19104 USA

Abstract

AbstractThe origin of MXene's excellent electromagnetic shielding performance is not fully understood. MXene films, despite being inhomogeneous at the nanometer scale, are often treated as if they are compared to bulk conductors. It is reasonable to wonder if the treatment of MXene as a homogeneous material remains valid at very small film thickness and if it depends on the interlayer spacing. The goal of the present work is to test if the homogeneous material model is applicable to nanometer‐thin Ti3C2Tx MXene films and, if so, to investigate how the model parameters may depend on variations in MXene interlayer spacings. MXene films containing flakes with interlayer spacing between 1.9 and 5.5 Å have been prepared using various intercalating agents. It is shown that modeling the films as being homogeneous agrees with experimental tests in the microwave frequency range. Microwave conductivity and dielectric constant parameters are estimated for the homogeneous film model by fitting measured results. The direct current (DC) conductivity matches the estimated microwave conductivity on the order of magnitude. A highly effective dielectric constant provides a good fit for the lower conductivity MXene films. Optical absorption agrees with the homogeneous material model of thin films as well.

Funder

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3