Active Site Engineering in Reticular Covalent Organic Frameworks for Photocatalytic CO2 Reduction

Author:

Rath Bibhuti Bhusan1ORCID,Krause Simon1ORCID,Lotsch Bettina Valeska123ORCID

Affiliation:

1. Max Planck Institute for Solid State Research Heisenbergstraße 1 70569 Stuttgart Germany

2. Department of Chemistry Ludwig‐Maximilians‐Universität (LMU) Butenandtstr. 5‐13 81377 Munich Germany

3. e‐conversion Lichtenbergstrasse 4a 85748 Garching Germany

Abstract

AbstractPhotochemical CO2 reduction using ubiquitous sunlight akin to natural photosynthesis is an effective approach for conversion of renewable energy into useful chemical feedstock. Driven by the need for earth‐abundant, inexpensive, and sustainable photocatalysts with practical applicability, covalent organic frameworks (COFs) have emerged as a new generation of molecularly defined semiconductors with tunable optoelectronic properties. These reticular frameworks with highly ordered, porous and crystalline structures can be tailor‐made by covalently combining organic building blocks to target specific functions. To date, numerous COFs have been reported, which show promising activity for photocatalytic CO2 reduction allowing to derive structure–property–function relationships. In this review, the different reported strategies are comprehensively analyzed and categorized for active site engineering in COF photocatalysts and the synthetic rationale and resulting catalytic activity for each approach are discussed. The recent advancements in terms of tailored photocatalyst design are then critically assessed, aspects of advanced materials characterization are analyzed, and future perspectives and challenges for the field are highlighted.

Funder

Carl-Zeiss-Stiftung

Alexander von Humboldt-Stiftung

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3