1D Van der Waals Polymers with Nonlinear Optical Performance Approaching Theoretical Upper Limit

Author:

Yang Jingyu12ORCID,Deng Jun1ORCID,Pan Jinbo123,Zhu Yongqian12,Zhang Yan‐Fang2,Li Yuhui12,Sun Jia‐Tao4,Du Shixuan123ORCID

Affiliation:

1. Beijing National Laboratory for Condensed Matter Physics and Institute of Physics Chinese Academy of Sciences Beijing 100190 P. R. China

2. University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China

3. Songshan Lake Materials Laboratory Dongguan 523808 P. R. China

4. School of Integrated Circuits and Electronics MIIT Key Laboratory for Low‐Dimensional Quantum Structure and Devices Beijing Institute of Technology Beijing 100081 P. R. China

Abstract

AbstractNonlinear optical (NLO) materials are of great importance for applications in lasers, atomic clocks, free‐space communication, etc. Herein, inspired by the recent prediction of excellent second harmonic generation (SHG) performance in van der Waals (vdW) materials with 1D building blocks, 14 new NLO materials are found from 244 bulk crystals constructed with 1D polymers using high‐throughput first‐principles calculations. Nearly half of the new NLO materials exhibit superior NLO performance with SHG susceptibilities approaching the theoretical upper limit. The 2D form of 11 candidates inherits the NLO property covering UV, visible, and infrared regions. Bader charge analysis reveals that the SHG susceptibility is determined by the charge difference of ions on the chains. Finally, it is proposed that superior NLO materials can be found in materials with proper bandgaps and large charge differences on the chains. This work not only screens out candidates with outstanding NLO performance in vdW materials with 1D building blocks but also provides a guideline for the search and design of NLO vdW 1D polymer patterns with excellent NLO properties.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3