Affiliation:
1. Department of Chemistry, Faculty of Engineering & Technology SRM Institute of Science and Technology Kattankulathur Tamil Nadu 603203 India
2. Department of Chemistry, Scottish Church College 1 & 3, Urquhart Square, Manicktala, Azad Hind Bag Kolkata West Bengal 700006 India
3. Leiden Academic Centre for Drug Research Einsteinweg 55 Leiden 2333 CC The Netherlands
4. Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC) Department of Organic and Macromolecular Chemistry Ghent University Krijgslaan 281‐S4 Ghent B‐9000 Belgium
Abstract
AbstractStimuli‐responsive polymers have received increasing attention for various applications due to their ability to adapt physical and chemical properties in response to external environmental stimuli. In this regard, poly(N‐isopropylacrylamide) (PNIPAM) is the most extensively studied stimuli‐responsive polymer and, consequently has been prominently featured in (bio)‐sensor development, adaptive coating technology, drug delivery, wound healing, tissue regeneration, artificial actuator design, sensor technology, responsive coatings, and soft robotics. This success can be mainly attributed to the accessible and versatile nature of the PNIPAM platform, thus allowing the synthesis of a wide variety of copolymer architectures, topologies and compositions. Within this review, the structural and compositional features of PNIPAM‐based materials in sensor and biosensor applications are discussed with a focus on the literature from 2016 until now. The reader is provided with the current state of the art regarding PNIPAM‐based sensor development and their molecular design. Finally, the challenges ahead in the successful implementation of PNIPAM‐based sensors are highlighted, as well as the opportunities in the rational design of improved PNIPAM‐based sensors. Altogether, this review provides comprehensive insights into the exciting and rapidly expanding field of PNIPAM‐based sensing systems, which will benefit the chemical, pharmaceutical, textile, and biotech industries is believed.
Funder
Science and Engineering Research Board
Fonds Wetenschappelijk Onderzoek
Universiteit Gent
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献