Peptide Amphiphile‐Mediated Assembly and Fusion of Anisotropic Amorphous Particles for Enamel Remineralization

Author:

Tang Zhenhang1ORCID,Chen Zhuo1ORCID,Wang Dayu1ORCID,Shan Songzhe1ORCID,Jin Wenjing1ORCID,Sun Kaida1ORCID,Pan Haihua2ORCID,Xie Zhijian1ORCID,Tang Ruikang23ORCID,Shao Changyu1ORCID

Affiliation:

1. Stomatology Hospital School of Stomatology Zhejiang University School of Medicine Clinical Research Center for Oral Diseases of Zhejiang Province Key Laboratory of Oral Biomedical Research of Zhejiang Province Cancer Center of Zhejiang University Hangzhou 310006 China

2. Qiushi Academy for Advanced Studies Zhejiang University Hangzhou 310027 China

3. Department of Chemistry Zhejiang University Hangzhou 310058 China

Abstract

AbstractEnamel remineralization, which attempts to generate a mineral layer structurally similar to native enamel and restore its mechanical properties, remains a significant challenge. Here, rationally designed peptide amphiphile (PA) molecules bind to amorphous calcium phosphate (ACP) particles via electrostatic interactions, imparting anisotropic properties that drive PA‐modified ACP to form spindle‐shaped aggregates. Furthermore, some residual PA molecules may further regulate crystallization and facilitate the formation of well‐aligned hydroxyapatite bundles. Additionally, the involvement of PA can mediate the ordered deposition and fusion of ACP on the enamel surface, and construct the crystalline‐amorphous mineralization front with a continuous structure. This mineralization front ensures epitaxially oriented growth of enamel crystals and achieves a structurally ordered mineral layer similar to that of native enamel, while the mechanical performance is effectively restored. More significantly, the thickness of the newly formed mineral layer can be augmented through cyclic remineralization, benefitting the design of products intended for practical enamel repair.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3