Multi‐Mode Optical Manometry Based on Li4SrCa(SiO4)2:Eu2+ Phosphors

Author:

Su Ke12,Mei Lefu2ORCID,Guo Qingfeng3,Shuai Pengfei2,Wang Yujia2,Liu Yukun2,Jin Yang2,Peng Zhijian1,Zou Bo4,Liao Libing2

Affiliation:

1. School of Science China University of Geosciences Beijing 100083 China

2. Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology China University of Geosciences Beijing 100083 China

3. Jewelry and Mineral Materials Laboratory of Experimental Teaching Demonstration Center School of Gemology China University of Geosciences Beijing 100083 China

4. State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China

Abstract

AbstractOptical manometry is a highly promising method for measuring pressure. However, its wider application is limited by the lower sensitivity and influenced by environmental factors. Herein, multi‐mode optical pressure sensors based on Eu2+‐doped Li4SrCa(SiO4)2 phosphors suitable for a variety of complex pressure‐measuring environments are designed. The phosphors contain two separate luminescence centers at 443 nm (EuSr) and 584 nm (EuCa), respectively. In the lower pressure range, the emission peak undergoes a massive redshift of 5.19 nm GPa−1 of EuCa, which is 14× better than commercially available ruby sensors. In order to improve the pressure response range and the accuracy of pressure measurement, for the first time, a new approach in the pressure readout method in which single Eu2+ ions doping based on fluorescence intensity ratio (FIR) pressure measurement is realized in designed materials. Meanwhile, the measured full width at half maximum (FWHM) as an indicator of pressure sensor performance also reveals that the sensing performance is d FWHM/d P ≈ 1.23 nm GPa−1 and d FWHM/d P ≈ 0.84 nm GPa−1 for EuSr and EuCa positions, respectively. Additionally, the structural stability of the phosphor is confirmed by in situ Raman spectrum. The above results indicate that the Li4SrCa(SiO4)2:0.04Eu2+ phosphor is a good candidate for multi‐mode optical pressure sensors.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3