Affiliation:
1. State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
2. School of Electronic and Computer Engineering Peking University Shenzhen Graduate School Shenzhen 518055 China
3. Key Laboratory of Automobile Materials Ministry of Education College of Materials Science and Engineering Jilin University Changchun 130012 China
Abstract
AbstractDeveloping effective strategy to passivate surface defects in quantum dots (QDs) is critical to achieving high‐efficiency and long‐life perovskite light‐emitting diodes (LEDs). Here, the supramolecular interaction underpinning of organic‐inorganic components is exploited and a facile method is proposed to generate multiple‐hydrogen‐bonded supramolecular‐perovskite crystal structures on QD surfaces by introducing O‐Tolylbiguanide (O‐Tg) during QD synthesis, enabling bright, conductive, and water‐resistant CsPbI3 QDs. Compared with commonly used oleic acid and oleylamine ligands, the biguanide functional group in O‐Tg not only forms multiple hydrogen bond interactions with lead halide octahedra passivating both bridging‐ and terminal‐halogen ion defects, but also compatibly occupies the A‐site position stabilizing the crystal structure simultaneously. With fewer nonradiative defects and introduced hydrophobic benzene rings preventing eroding of polar molecules, CsPbI3 QDs exhibit remarkable photoluminescence quantum yields of 96%, and their film can be submerged in water for 30 h without degrading. The corresponding LEDs display a high external quantum efficiency (21.2%) and offer superior operational stability with a lifetime (T90) of 25 h at a constant current density as high as 50 mA cm−2.
Funder
National Key Research and Development Program of China
Key Technologies Research and Development Program
National Natural Science Foundation of China