Three‐Step Regenerative Strategy: Multifunctional Bilayer Hydrogel for Combined Photothermal/Photodynamic Therapy to Promote Drug‐Resistant Bacteria‐Infected Wound Healing

Author:

Zha Kangkang1,Zhang Wenqian1,Hu Weixian1,Tan Meijun2,Zhang Shengming1,Yu Yongsheng3,Gou Shuangquan2,Bu Pengzhen2,Zhou Bikun2,Zou Yanan2,Xiong Yuan1,Mi Bobin1,Liu Guohui1,Feng Qian2,Cai Kaiyong2ORCID

Affiliation:

1. Department of Orthopaedics Union Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan 430022 China

2. Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400044 China

3. Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 China

Abstract

AbstractThe drug‐resistant bacterial‐infected skin wound is still a severe healthcare problem. Uncontrolled bacterial infection, abundant reactive oxygen species (ROS) content, and prolonged inflammatory response are detrimental to wound healing. Moreover, excessive vessel growth can result in unsatisfactory scar formation. Herein, a three‐step regenerative strategy based on a bilayered gelatin/acryloyl β‐cyclodextrin (BGACD) hydrogel containing physical host–guest complexations and chemical crosslinks is proposed. The hydrogel is loaded with humic acids (HAs) and astragaloside IV (AS) in the lower layer and verteporfin (Vt) in the upper layer. Different gelatin/acryloyl β‐cyclodextrin ratios endow the lower and upper layers of the hydrogel with different degradation rates. Under light irradiation, the combination of HAs‐induced photothermal therapy (PTT) and verteporfin‐induced photodynamic therapy effectively inhibits MRSA growth. The HAs and astragaloside IV are released from the lower layer to scavenge ROS and promote M2 macrophage polarization and angiogenesis during the inflammation and early proliferation phases, while verteporfin releases from the upper layer suppress excessive vessel growth during the late proliferation and remodeling phases. The HAs‐AS@Vt@BGACD hydrogel successfully achieves rapid and scarless wound healing in an MRSA‐infected wound model in rats. Therefore, the HAs‐AS@Vt@BGACD hydrogel shows promising potential for the treatment of drug‐resistant bacteria‐infected skin wound healing.

Funder

China Postdoctoral Science Foundation

Natural Science Foundation for Young Scientists of Shanxi Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3