Tuning Electronegativity‐Difference Configuration to Construct Non‐Bonded O 2p Orbitals for Reversible Anionic Redox in O3‐Type Cathode

Author:

Li Zeyu1,Yu Yang1ORCID,Zhang Tianran1,Wong Deniz2,Schulz Christian2,Zhang Nian3,Ning De45,Li Qingyuan1,Zhang Jicheng1,Liu Xiangfeng1ORCID

Affiliation:

1. Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China

2. Department of Dynamics and Transport in Quantum Materials Helmholtz‐Zentrum Berlin für Materialien und Energie Hahn‐Meitner‐Platz 1 14109 Berlin Germany

3. Shanghai Institute of Microsystem and Information Technology Chinese Academy of Sciences Shanghai 200050 P. R. China

4. Center for Photonics Information and Energy Materials Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 P. R. China

5. Department of Microstructure and Residual Stress Analysis Helmholtz‐Zentrum Berlin für Materialien und Energie Hahn‐Meitner‐Platz 1 14109 Berlin Germany

Abstract

AbstractHow to tune the activity and reversibility of oxygen anion redox (OAR) is a critical issue for O3‐type sodium‐ion battery (SIB) cathodes. Herein, the key role of electronegativity‐difference configuration on the activation of OAR is find out, and further tune electronegativity‐difference configuration with La incorporation to construct non‐bonded O 2p orbitals and achieve the reversible anionic redox in O3‐type NaMn1/3Fe1/3Ni1/3O2. Owing to the special extranuclear electronic structure of La3+ [Xe], the La electron cloud is difficult to be disturbed by the O electron cloud, and some O electrons do not participate in the formation of ionic bonds, thus retaining the non‐bonded electrons of O 2p and activating OAR. Moreover, La3+ doping also decreases the Coulomb force between Na+ and O2− favoring Na+ migration as well as strengthening the La─O bonds inhibiting the irreversible phase transition. La2O3 coating layer also plays a role on inhibiting the reaction between molecular oxygen and the electrolyte, and making OAR reversible. After modification, the cycling stability is significantly improved (86.9% vs 27.3%@2C@200cycles; 90.8% vs 52.9%@5C@300 cycles). This study presents some insights on OAR activation mechanism and offers a facile strategy to improve the activity and reversibility of OAR for designing high performance SIBs cathodes.

Funder

National Natural Science Foundation of China

Chinese Academy of Sciences

Natural Science Foundation of Beijing Municipality

National Key Scientific Instrument and Equipment Development Projects of China

CAS-SAFEA International Partnership Program for Creative Research Teams

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3