High Effective Permeability and Low Power Loss of FeSiAl/Al2O3/ZnO SMC for High Frequency Application

Author:

Li Hongxia1ORCID,Lu Ziwen1,Yu Shuai1,Zhao Mengyi1,Liu Zhaoyuan1,Li Zhong1,Rong Huawei1,Zhang Xuefeng1

Affiliation:

1. Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310012 China

Abstract

AbstractSoft magnetic composites (SMCs) are key materials in electronic devices. Conventional SMCs incorporate too much insulating material in order to reduce eddy current loss at high frequency, resulting in severe magnetic dilution and demagnetization field, which leads to deterioration of the magnetic performance. In this paper, ZnO precursor is homogeneously deployed on the surface of FeSiAl, which in situ generates a thin and dense Al2O3 layer on the surface of FeSiAl through the interfacial solid phase reaction between Al and O atoms during annealing process. Meanwhile, ferromagnetic ZnO layer is simultaneously obtained due to the loss of O. The formed Al2O3/ZnO layers effectively reduce power loss and endow high frequency stability with less influence on effective permeability. Finally, FeSiAl/ZnO‐0.4% SMC exhibits low power loss of 83.2 mW cm−3 (50 mT/100 kHz), high effective permeability of 92, and cut‐off frequency as high as 40 MHz. This study provides an efficient route for high performance SMCs and broadens high frequency application of soft magnetic devices.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3