Affiliation:
1. Helmholtz Institute Ulm (HIU) Helmholtzstraße 11 D‐89081 Ulm Germany
2. Karlsruhe Institute of Technology (KIT) P.O. Box 3640 D‐76021 Karlsruhe Germany
3. Chemistry Department Sapienza University Piazzale A. Moro 5 I‐00185 Rome Italy
Abstract
AbstractAluminum–sulfur batteries employing high‐capacity and low‐cost electrode materials, as well as non‐flammable electrolytes, are promising energy storage devices. However, the fast capacity fading due to the shuttle effect of polysulfides limits their further application. Herein, alkaline chlorides, for example, LiCl, NaCl, and KCl are proposed as electrolyte additives for promoting the cyclability of aluminum–sulfur batteries. Using NaCl as a model additive, it is demonstrated that its addition leads to the formation of a thicker, NaxAlyO2‐containing solid electrolyte interphase on the aluminum metal anode (AMA) reducing the deposition of polysulfides. As a result, a specific discharge capacity of 473 mAh g−1 is delivered in an aluminum–sulfur battery with NaCl‐containing electrolyte after 50 dis‐/charge cycles at 100 mA g−1. In contrast, the additive‐free electrolyte only leads to a specific capacity of 313 mAh g−1 after 50 cycles under the same conditions. A similar result is also observed with LiCl and KCl additives. When a KCl‐containing electrolyte is employed, the capacity increases to 496 mA h g−1 can be achieved after 100 cycles at 50 mA g−1. The proposed additive strategy and the insight into the solid electrolyte interphase are beneficial for the further development of long‐life aluminum–sulfur batteries.
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献