Affiliation:
1. Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge MA 02139‐4307 USA
2. School of Chemistry & CRANN Trinity College Dublin College Green Dublin D02 PN40 Ireland
Abstract
AbstractOptoelectronic technologies are based on families of semiconductor alloys. It is rare that a new semiconductor alloy family is developed to the point where epitaxial growth is possible; since the 1950s, this has happened approximately once per decade. Herein, this work demonstrates epitaxial thin film growth of semiconducting chalcogenide perovskite alloys in the Ba‐Zr‐S‐Se system by gas‐source molecular beam epitaxy (MBE). This work stabilizes the full range y = 0 − 3 of compositions BaZrS(3‐y)Sey in the perovskite structure. The resulting films are environmentally stable and the direct band gap (Eg) varies strongly with Se content, as predicted by theory, with Eg = 1.9 − 1.5 eV for y = 0 − 3. This creates possibilities for visible and near‐infrared (VIS–NIR) optoelectronics, solid‐state lighting, and solar cells using chalcogenide perovskites.
Funder
National Science Foundation
Air Force Office of Scientific Research
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献