Robust Ferrimagnetism and Switchable Magnetic Anisotropy in High‐Entropy Ferrite Film

Author:

Jin Fei12,Zhu Yuanming3,Li Li2,Pan Zizhao2,Pan Desheng2,Gu Meng2,Li Qian4,Chen Lang5,Wang Hong2ORCID

Affiliation:

1. State Key Laboratory for Mechanical Behavior of Materials School of Electronic and Information Engineering Xi'an Jiaotong University Xi'an 710049 China

2. Department of Materials Science and Engineering Shenzhen Engineering Research Center for Novel Electronic Information Materials and Devices Southern University of Science and Technology Shenzhen 518055 China

3. Research Institute of Interdisciplinary Science & School of Materials Science and Engineering Dongguan University of Technology Dongguan 523808 China

4. National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei Anhui 230029 China

5. Department of Physics Southern University of Science and Technology Shenzhen 518055 China

Abstract

AbstractFerrimagnetic insulator materials are the enabling technology for the development of next‐generation magnetic devices with low power consumption, high operation speed, and high miniaturization capability. To achieve a high‐density memory device, a combined realization of robust saturation magnetization (Ms), controllable magnetic anisotropy, and high resistivity (ρ) are highly demanded. Despite significant efforts that have been made recently, simultaneously achieving significant enhancements in these properties in a soft magnetic insulator material still remains a great challenge, severely limiting their practical application. Herein, a high‐entropy strategy in an ultra‐thin spinel ferrite (CrMnFeCoNi)3O4 film is reported that exhibits concurrently a superior saturation magnetization (MS = 1198 emu cm−3), low coercivity (HC = 90 Oe), and excellent resistivity (ρ = 1233 Ω cm), as well as switchable magnetic anisotropy. The comprehensive lattice probing and microstructure analysis studies reveal that such desirable ferromagnetic properties originate from the high‐quality structurally ordered but compositionally disordered single‐crystal epitaxial structure. The switchable magnetic anisotropy demonstrated in the high‐entropy ferrite film can be attributed to the new antiferromagnetic rock‐salt phase. This work unveils the critical benefits of the high‐entropy strategy for magnetic oxide thin films, which opens up new opportunities for the development of high‐performance magnetic materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3