Affiliation:
1. School of Mathematical and Physical Sciences University of Sussex Brighton BN1 9QH UK
2. School of Engineering and Materials Science Queen Mary University London E1 4NS UK
3. School of Pharmacy and Biomolecular Sciences University of Brighton Brighton BN2 4GJ UK
Abstract
AbstractThe environmental impact of plastic waste has had a profound effect on our livelihoods and there is a need for future plastic‐based epidermal electronics to trend toward more sustainable approaches. Infusing graphene into the culinary process of seaweed spherification produces core‐shell, food‐based nanocomposites with properties exhibiting a remarkably high degree of tunability. Unusually, mechanical, electrical, and electromechanical metrics all became decoupled from one another, allowing for each to be individually tuned. This leads to the formation of a general electromechanical model which presents a universal electronic blueprint for enhanced performances. Through this model, performance optimization and system miniaturization are enabled, with gauge factors (G) >108 for capsule diameters (D) ≈290 µm and produced at a record rate of >100 samples per second. When coalesced into quasi‐2D planar networks, microcapsules form the basis of discrete, recyclable electronic smart skins with areal independent sensitives for muscular, breathing, pulse, and blood pressure measurements in real‐time.
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献