Enhanced Photon Recycling Enables Efficient Perovskite Light‐Emitting Diodes

Author:

Cho Changsoon123,Sun Yuqi1,You Jeonghwan2,Cui Lin‐Song4,Greenham Neil C.1ORCID

Affiliation:

1. Cavendish Laboratory Department of Physics University of Cambridge Cambridge CB3 0HE UK

2. Department of Material Science and Engineering Pohang University of Science and Technology (POSTECH) Pohang 37673 Republic of Korea

3. Institute for Convergence Research and Education in Advanced Technology Yonsei University Seoul 03722 Republic of Korea

4. Key Laboratory of Precision and Intelligent Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China

Abstract

AbstractPerovskite light‐emitting diodes (PeLEDs) have recently experienced rapid growth in performance. While photon recycling, which involves the reemission of reabsorbed light, significantly boosts efficiency, PeLED structures are typically based on classical design principles, often overlooking photon recycling. Here, a practical strategy to maximize the benefit of the photon recycling effect in PeLEDs is demonstrated. Parasitic absorption in electrodes represents a significant loss that impedes the efficient recycling of photons in trapped modes. The design strategy is verified by improving the average electroluminescence quantum efficiencies from 19.5% to 22.0% in near‐infrared PeLEDs with thinner indium tin oxide (ITO) electrodes, ultimately achieving a champion efficiency of 23.9%. The effect of photon recycling is visualized by transient photoluminescence mapping. It is quantified computationally that the additional efficiency coming from photon recycling is doubled from 2.3% to 4.8% in the device by suppressing the relative loss in ITO from 39% to 13%. The strategies raise the theoretical upper bound efficiency of PeLEDs with a gold top electrode from 27% to 37% by boosting the photon recycling effect.

Funder

National Research Foundation of Korea

Engineering and Physical Sciences Research Council

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3