Ultralong Cycle Life for Deep Potassium Storage Enabled by BiOCl/MXene van der Waals Heterostructures

Author:

Cao Xin1,You Yuying1,Sha Dawei1,Xia Huan1,Wang Hang2,Zhang Jing2,Hu Rongxiang1,Wei Yicheng1,Bao Zhuoheng1,Xu Yang3,Pan Long1,Lu Chengjie1ORCID,He Wei1ORCID,Zhou Min2ORCID,Sun ZhengMing1ORCID

Affiliation:

1. School of Materials Science and Engineering Southeast University Nanjing Jiangsu 211189 P. R. China

2. Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei Anhui 230026 P. R. China

3. Department of Chemistry University College London London WC1H 0AJ UK

Abstract

AbstractConversion/alloying‐type anodes are drawing attention due to their high theoretical capacities, but inferior reversibility, especially under low current densities, has hampered potential applications. Conventional strategies mainly focus on conversion/alloying processes, whereas the intercalation process is rarely analyzed. Herein, the intercalation process is correlated with conversion/alloying processes by ion dispersion states. BiOCl/Ti3C2Tx MXene van der Waals heterostructure is selected as a proof‐of‐concept system. Multifunctional MXenes not only contribute to atomic dispersion and boosted ion diffusion at the first cycle by constructing a novel heterostructure but serve as supporting frameworks to sustain long‐term structural stability. Consequently, a cell with BiOCl/MXene anode delivers an ultralong cycle‐life of running over ten months, maintaining a high capacity of 225 mAh g−1 over 1300 cycles at 100 mA g−1 and a retention of 81.3%. These findings verify that enhanced initial intercalation can facilitate higher reversibility and shed light on developing high‐performance conversion/alloying‐type anodes.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Jiangsu Province

China Scholarship Council

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3