In Situ Phase Transformation to form MoO3−MoS2 Heterostructure with Enhanced Printable Sodium Ion Storage

Author:

Yu Lianghao12,Tao Xin1,Sun Dengning3,Zhang Linlin1,Wei Chaohui4,Han Lu1,Sun Zhongti3,Zhao Qing5,Jin Huile2ORCID,Zhu Guang1

Affiliation:

1. Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes Suzhou University Suzhou 234000 China

2. Key Lab of Advanced Energy Storage and Conversion Zhejiang Province Key Lab of Leather Engineering College of Chemistry and Materials Engineering Wenzhou University Wenzhou Zhejiang 325035 China

3. School of Materials Science and Engineering Jiangsu University Zhenjiang Jiangsu 212013 P. R. China

4. Yangtze Delta Region Institute (Huzhou) University of Electronic Science and Technology of China Huzhou 313001 China

5. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 China

Abstract

AbstractMolybdenum trioxide (MoO3) possesses high energy density but often suffers from poor electrical conductivity and limited cycling stability when used as a sodium‐ion battery (SIB) anode. To address these issues, the construction of (Molybdenum trioxide‐Molybdenum disulfide)MoO3‐MoS2 heterostructures has proven effective in enhancing electronic conductivity, ion diffusion properties, and structural stability. Guided by the density functional theory (DFT) calculations, which predict favorable Na+ diffusion and adsorption properties, nanorod‐like MoO3‐MoS2 heterostructures are synthesized using a two‐step method. Benefiting from the synergistic effects of the heterostructure and nanosized morphology, the resulting MoO3‐MoS2 electrode exhibits outstanding rate performance (316 mA h g−1 at 10 A g−1) and long‐lasting cycling stability (286 mA h g−1 after 2300 cycles at 5 A g−1) as an SIB anode. In situ XRD measurements reveal that the ultrahigh specific capacity of MoO3‐MoS2 is attributed to the synergistic intercalation‐conversion storage of MoO3 and MoS2. In the pursuit of meeting commercialization requirements, electrodes with adjustable mass loading are also prepared using 3D printing, showcasing the high areal capacity characteristics of the SIBs. This study not only provides theoretical insights into expanding the use of heterojunction materials as SIB anodes but also demonstrates the significant potential for creating high‐energy‐density and cost‐effective SIBs.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3