In Situ Imaging of Dynamic Current Paths in a Neuromorphic Nanoparticle Network with Critical Spiking Behavior

Author:

Gronenberg Ole1ORCID,Adejube Blessing2ORCID,Hemke Torben3ORCID,Drewes Jonas2ORCID,Asnaz Oguz Han4ORCID,Ziegler Florian2ORCID,Carstens Niko2ORCID,Strunskus Thomas25ORCID,Schürmann Ulrich15,Benedikt Jan45ORCID,Mussenbrock Thomas3ORCID,Faupel Franz25ORCID,Vahl Alexander25ORCID,Kienle Lorenz15ORCID

Affiliation:

1. Department of Materials Science – Synthesis and Real Structure Faculty of Engineering Kiel University Kaiserstraße 2 D‐24143 Kiel Germany

2. Department of Materials Science – Chair for Multicomponent Materials Faculty of Engineering Kiel University Kaiserstraße 2 D‐24143 Kiel Germany

3. Chair of Applied Electrodynamics and Plasma Technology (AEPT) Ruhr University Bochum Universitätsstraße 150 D‐44801 Bochum Germany

4. Experimental Plasma Physics Institute of Experimental and Applied Physics Kiel University Leibnizstraße 19 D‐24098 Kiel Germany

5. Kiel Nano Surface and Interface Science KiNSIS Kiel University Christian‐Albrechts‐Platz 4 D‐24118 Kiel Germany

Abstract

AbstractIn the strive for energy efficient computing, many different neuromorphic computing and engineering schemes have been introduced. Nanoparticle networks (NPNs) at the percolation threshold have been established as one of the promising candidates, e.g., for reservoir computing because among other useful properties they show self‐organization and brain‐like avalanche dynamics. The dynamic resistance changes trace back to spatio‐temporal reconfigurations in the connectivity upon resistive switching in distributed memristive nano‐junctions and nano‐gaps between neighboring nanoparticles. Until now, however, there has not yet been any direct imaging or monitoring of current paths in NPN. In this study, an NPN comprising of Ag/CxOyHz core/shell and Ag nanoparticles at the percolation threshold is reported. It is shown that this NPN is within a critical regime, exhibiting avalanche dynamics. To monitor in situ the evolving current paths in this NPN, active voltage contrast and resistive contrast imaging are used complementarily. Including simulations, the results provide experimental insight toward understanding the complex current response of the memristive NPN. As such, this study paves the way toward an experimental characterization of dynamic reorganizations in current paths inside NPN, which is highly relevant for validating and improving simulations and finally establishing a deeper understanding of switching dynamics in NPNs.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3