3D Covalent Polyoxovanadate‐Organic Framework as an Anode for High‐Performance Lithium‐Ion Batteries

Author:

Zhao Yingnan1,Li Wenliang1,Li Yingqi1,Qiu Tianyu1,Mu Xin1,Ma Yuzhu2,Zhao Yan2,Zhang Jingping1,Zhang Jiangwei2,Li Yangguang1ORCID,Tan Huaqiao13

Affiliation:

1. Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education Faculty of Chemistry Northeast Normal University Changchun 130024 P. R. China

2. Science Center of Energy Material and Chemistry College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 P. R. China

3. Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 P. R. China

Abstract

AbstractPolyoxometalates (POMs), as a unique class well‐defined metal‐oxo clusters with excellent multielectron redox properties, have attracted extensive attention in the field of energy storage and conversion, but it is still challenging to achieve their highly uniform and stable monodispersed. In this study, for the first time, polyoxovanadate (POV) is used, (NH4)2[VIV3VV3O10{NH2C(CH2O)3}3] (tris‐V6O19), as nodes and successfully obtain a 3D covalent polyoxovanadate‐organic framework through a green hydrothermal synthesis method, termed POF‐1. Total scattering atomic pair distribution function analysis confirms that POF‐1 has a noninterpenetrated diamond‐like framework, fully exposing the monodispersed tris‐V6O19, effectively utilizing the active components of VIV/VV and enhancing surface mass transfer. Notably, POF‐1 demonstrates exceptional performance in lithium‐ion batteries, achieving a high reversible capacity of 887.4 mAh g−1 at 0.1 A g−1 and retaining over 92% capacity at 1 C during 1000 cycles. Electrochemistry mechanism and density functional theory calculations reveal that V centers in tris‐V6O19 and carbonyls (C═O) in BDOEB linkers are the main active sites, with each POF‐1 fragment capable of storing up to 14 Li+. This study opens a new pathway for the efficient and green synthesis of new 3D well‐defined POM‐organic frameworks, and shows great application prospect in the field of energy storage.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3