Hierarchical Weaving Metafabric for Unidirectional Water Transportation and Evaporative Cooling

Author:

Zhang Ling1,Guo Yuwei1,Mo Ruolian1,Liu Xiang1,Wang Guang1,Wu Ronghui12ORCID,Liu Hongling1

Affiliation:

1. Key Laboratory of Textile Science and Technology Ministry of Education College of Textiles Donghua University Shanghai 201620 China

2. Pritzker School of Molecular Engineer University of Chicago Chicago 60637 USA

Abstract

AbstractSmart apparel with unidirectional sweat transportation functionality is highly desirable for wearing comfort. However, simultaneously achieving fast unidirectional water transport, mechanical robustness, human body comfortability, and industrialized fabrication is challenging because of the difficulty in fiber‐yarn‐fabric multiscale textile structure manipulation. Here, for the first time, a unidirectional water‐transportation metafabric (UWTM) with hierarchical weft‐double‐weave structure is developed using industrial‐producible weaving technology. The UWTM not only shows a fast unidirectional sweat transportation property, but also a robust mechanical property, air permeability, tailorability, and human body comfortability. The unidirectional water transportation is realized by a well‐engineered wettability gradient along fabric thickness direction by two‐set weft yarns and one‐set warp yarn. The UWTM shows a strong one‐way transport capacity of 984%, with a short water droplet transportation time of 4 s. In addition, the unidirectional water transportation leads to an evaporative cooling effect to the human body, resulting in a 1.6 °C cooling compared with the most used cotton fabrics, exhibiting excellent wet‐heat transfer responsiveness, and ensuring a comfortable microclimate between human skin and the environment. The facile and scalable method presented here paves a way for the design of fluorine‐free, robust, comfortable, and wearable unidirectional water transport fabrics.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3