Robust Super‐Lubricity for Novel Cartilage Prototype Inspired by Scallion Leaf Architecture

Author:

Liu Hui12,Zhao Weiyi12,Zhang Yunlei12,Zhao Xiaoduo13,Ma Shuanhong13ORCID,Scaraggi Michele145,Zhou Feng1

Affiliation:

1. State Key Laboratory of Solid Lubrication Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000 China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 China

3. Shandong Laboratory of Yantai Advanced Materials and Green Manufacture Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering Yantai 264006 China

4. Center for Biomolecular Nanotechnologies Istituto Italiano di Tecnologia (IIT) Via Barsanti 14 Arnesano (LE) 73010 Italy

5. Department of Engineering for Innovation University of Salento Monteroni‐Lecce 73100 Italy

Abstract

AbstractThe simultaneous achievement ‐under physiologically high contact pressures‐ of ultra‐low friction, nearly zero surface wear, and long lifetime in the development of human cartilage prosthetics is still a big challenge. In this work, inspired by the unique lubrication mechanism of scallion leaves resulting from the synergy of oriented surface micro‐topography and mucus hydration, a novel layered soft hydrogel as cartilage prototype is developed by chemically embedding thick hydrophilic polyelectrolyte brush chains into the sub‐surface of a high strength anisotropic hydrogel bulk. It exhibits an anisotropic polymer network with unique mechanical properties (tensile strength: 8.3 to 23.7 MPa; elastic modulus 20.0 to 30.0 MPa), anisotropic hydrated surface texture, super‐lubricity, and excellent wear resistance. Thydrogel architecture can exhibit low coefficient of friction (COF) less than ≈0.01 under a wide range of contact stresses (0.2 to 2.4 MPa) and maintain cartilage‐like long‐lasting (50k sliding cycles) robust super‐lubricity (COF ≈ 0.006) and nearly‐zero wear under high contact pressure (≈2.4 MPa) condition. Theoretical underpinning reveals how multiscale surface anisotropy, mechanics, and hydration regulate super‐low friction generation. This work provides a novel design paradigm for the fabrication of robust soft materials with extraordinary lubricity as implantable prototypes and coatings.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3