Simultaneous CO2and H2O Activation via Integrated Cu Single Atom and N Vacancy Dual‐Site for Enhanced CO Photo‐Production

Author:

Duan Youyu1,Wang Yang1,Zhang Weixuan1,Zhang Jiangwei2,Ban Chaogang1,Yu Danmei1,Zhou Kai3,Tang Jinjing3,Zhang Xu4,Han Xiaodong4,Gan Liyong156,Tao Xiaoping1,Zhou Xiaoyuan1356ORCID

Affiliation:

1. College of Physics and Center of Quantum Materials and Devices Chongqing University Chongqing 401331 P. R. China

2. College of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021 P. R. China

3. Analytical and Testing Center Chongqing University Chongqing 401331 P. R. China

4. Beijing Key Laboratory of Microstructure and Property of Advanced Materials Beijing University of Technology Beijing 100024 P. R. China

5. State Key Laboratory of Coal Mine Disaster Dynamics and Control Chongqing University Chongqing 401331 P. R. China

6. Chongqing Institute of New Energy Storage Material and Equipment Chongqing 401120 P. R. China

Abstract

AbstractPhotocatalytic conversion of CO2into fuels using pure water as the proton source is of immense potential in simultaneously addressing the climate‐change crisis and realizing a carbon‐neutral economy. Single‐atom photocatalysts with tunable local atomic configurations and unique electronic properties have exhibited outstanding catalytic performance in the past decade. However, given their single‐site features they are usually only amenable to activations involving single molecules. For CO2photoreduction entailing complex activation and dissociation process, designing multiple active sites on a photocatalyst for both CO2reduction and H2O dissociation simultaneously is still a daunting challenge. Herein, it is precisely construct Cu single‐atom centers and two‐coordinated N vacancies as dual active sites on CN (Cu1/N2CV‐CN). Experimental and theoretical results show that Cu single‐atom centers promote CO2chemisorption and activation via accumulating photogenerated electrons, and the N2CV sites enhance the dissociation of H2O, thereby facilitating the conversion from COO* to COOH*. Benefiting from the dual‐functional sites, the Cu1/N2CV‐CN exhibits a high selectivity (98.50%) and decent CO production rate of 11.12 µmol g−1 h−1. An ingenious atomic‐level design provides a platform for precisely integrating the modified catalyst with the deterministic identification of the electronic property during CO2photoreduction process.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3