Long‐Term Storage Stable Vesicle‐Like Nanoparticles of Lipid and Polymer for siRNA and mRNA‐Mediated Cancer Immunotherapy

Author:

Chen Chaoran12,Zhang Yuxi1,Cao Ziyang1,Li Dongdong1,Zhu Yueqiang12,Jing Houjin12,Li Yan12,Li Fangzheng12,Xu Cong‐Fei12,Yang Xianzhu12ORCID,Wang Jun12

Affiliation:

1. School of Biomedical Sciences and Engineering South China University of Technology Guangzhou International Campus Guangzhou Guangdong 511442 P. R. China

2. National Engineering Research Center for Tissue Restoration and Reconstruction Guangdong Province Key Laboratory of Biomedical Engineering Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education South China University of Technology Guangzhou Guangdong 510006 P. R. China

Abstract

AbstractRNA‐based therapeutics have emerged as a promising strategy for cancer immunotherapy, encompassing the silencing of immune checkpoint genes, chimeric antigen receptor T (CAR‐T) cell production, and antitumor vaccines. Despite their tremendous potential, the urgent need for the development of clinically applicable delivery systems remains paramount. In this study, vesicle‐like nanoparticles (VNPs) are devised using clinically approved amphiphilic polymers and lipids as the delivery system for siRNA and mRNA. Through meticulous formulation adjustments of cationic lipids and ionizable lipids, a VNP formulation with exceptional transfection efficiency is identified. Notably, the VNPs maintained their remarkable transfection efficiency even after 6 months of storage. When loaded with siPD‐L1 and siCD47, these VNPs effectively silenced two critical immune checkpoint genes, enabling successful cancer immunotherapy. Moreover, when employed as a delivery system for mRNA vaccines, the VNPs induced a robust population of antigen‐specific CD8+ T cells in immunized mice. This led to the successful suppression of tumor growth (5 out of 8 subjects becoming tumor‐free) and nearly complete inhibition of lung metastasis. In summary, this lipid‐ and polymer‐based VNPs offer a long shelf life, excellent loading and transfection efficiency, versatility for various RNA types, and hold great promise as a delivery system for clinical applications.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3