Affiliation:
1. Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Materials Science and Technology China University of Geosciences (Beijing) Beijing 100083 China
Abstract
AbstractLayered crystal materials have blazed a promising trail in the design and optimization of electrodes for magnesium ion batteries (MIBs). The layered crystal materials effectively improve the migration kinetics of the Mg2+ storage process to deliver a high energy and power density. To meet the future demand for high‐performance MIBs, significant work has been applied to layered crystal materials, including crystal modification, mechanism investigation, and micro/nanostructure design. Herein, this review presents a comprehensive overview of layered crystal materials applied to MIBs, from development history to current applications. It focuses on the relationship between the layered crystal structure and the energy storage mechanism. Meanwhile, recent achievements in the design principles of layered crystal materials and their application to electrodes are summarized. Finally, future perspectives on the application of layered materials in MIBs are presented. The overview of the development process and structural characteristics contributes to a thorough understanding of these materials, while a discussion of design strategies and practical applications can inspire further research. Therefore, this review provides guidance and assistance for constructing high‐performance MIBs.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献