Affiliation:
1. State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine Department of Laboratory Medicine School of Public Health Xiamen University Xiamen 361005 China
2. School of Materials Science and Engineering Harbin Institute of Technology (Shenzhen) Shenzhen 518055 China
3. School of Pharmacy Henan University of Chinese Medicine Zhengzhou 450046 China
4. State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 10010 China
Abstract
AbstractSonodynamic bacterial inactivation, a reactive oxygen species (ROS)‐empowered approach featuring high penetration depth and low health risk, is explored for antibiotic‐free antibacterial treatment. However, the low yield and insufficient diffusion of ROS negatively affect the antibacterial efficacy of sonodynamic treatment, thus hindering its further development. Here an actuator‐integrated mechanism is proposed for enhancing the sonodynamic efficacy of loaded sonosensitizers through motion‐induced hydrodynamic effects, demonstrated by a porphyrin‐decorated gold nanomotor, which can produce ROS for bacterial inactivation while performing multimodal motion via actuation using low‐frequency ultrasound. Corroborated by numerical simulation, the experimental results show that the motor's stirring motion significantly increases the yield and diffusion of ROS through fluid flow and frequent interactions between the motor and bacterial targets, resulting in doubled antibacterial efficiency in comparison to a stationary motor. Furthermore, the flow‐induced shear forces combined with the frequent interactions constitute a source of mechanical damage and can form a synergy with the antibacterial properties of ROS, enabling an efficient biofilm eradication that is inaccessible by freely suspended porphyrin. In conclusion, this study reports a motion‐based strategy to enhance sonodynamic efficacy and provides proof of concept using a sonodynamic gold nanomotor powered by ultrasound.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献