Deep Neural Network Predicts Ti‐6Al‐4V Dissolution State Using Near‐Field Impedance Spectra

Author:

Kurtz Michael A.12ORCID,Yang Ruoyu3,Liu Dinghe12,Elapolu Mohan S.R.3,Rai Rahul3,Gilbert Jeremy L.12ORCID

Affiliation:

1. Department of Bioengineering Clemson University Clemson SC 29634 USA

2. The Clemson University‐Medical University of South Carolina Bioengineering Program Charleston SC 29401 USA

3. Department of Automotive Engineering Clemson University Greeneville SC 29601 USA

Abstract

AbstractRetrieval studies document Ti‐6Al‐4V selective dissolution within crevices of total hip replacement devices. A gap persists in the fundamental understanding of Ti‐6Al‐4V crevice corrosion in vivo and its impact on local impedance. Previous studies use nearfield electrochemical impedance spectroscopy (nEIS) for characterization of retrieved CoCrMo surfaces and phase angle symmetry‐based EIS (sbEIS) for rapid data acquisition. In this study, these methods are combined with a deep neural network to characterize the local impedance changes after selective dissolution. It is hypothesized that structural changes occurring during dissolution will manifest as property changes to the oxide film capacitance. First, after sustained cathodic activation, the Ti‐6Al‐4V β phase selectively dissolves from the surface. Next, nEIS acquires n = 100 control and n = 105 dissolved spectra. Over dissolved regions, oxide capacitance significantly increases (Log10Q = ‐4.17 versus ‐4.78 (Scm−2(s)α), p = 0.000). Using single frequency EIS (5000 Hz), a capacitance‐based scanning impedance microscopy method identifies dissolved regions within seconds. Finally, Bode phase plots of the 205 control and dissolved nEIS spectra are input into a deep neural network. After training with n = 180 spectra, the model predicts the surface state for n = 25 previously unseen nEIS spectra with 96% accuracy.

Funder

Medical University of South Carolina

Clemson University

Wyss Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3