Affiliation:
1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Materials Science and Engineering Donghua University Shanghai 201620 China
2. Department of Materials Science and Technology Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
3. Henan Kegao Radiation Chemical Technology Co. Ltd Henan 471023 China
4. Department of Materials Science Fudan University Shanghai 200433 China
Abstract
AbstractElectrochemical Performance of aqueous Zn‐ion batteries (AZIBs) is prominently constrained by poor stability of zinc‐metal anodes. However, the use of conventional aqueous separators unfavorable to the uniform deposition of Zn metal and restricted cell cycle life, has hindered the large‐scale application of such battery systems. Here, a separator with hydrophobic/hydrophilic structural domains (marked as PP‐g‐AA) is reported, where the polypropylene (PP) polymer backbone permits partial blockage of water molecules and prevent side reactions, and the carboxyl functional groups in the grafted acrylic acid (AA) facilitate to well regulate the interfacial electric field and Zn2+ ion concentration field, thus remarkably promotes homogenization of zinc ion flux, achieving dendritic‐free deposition of Zn2+. Moreover, the PP‐g‐AA separator sustains a long‐term cycling over 4000 h at a current density of 2 mA cm−2 with a high Coulombic efficiency of 99.6% achieved in Zn||Cu cells, which if assembled into Zn||Zn0.27V2O5·nH2O (ZVO) cells would yield ≈100% retention for 1000 cycles. This research highlights that the strategy opens up a new avenue based on PP‐g‐AA for further decreasing the cost and promoting the industrial application of AZIBs.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献