Affiliation:
1. Department of Ultrasound The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 P. R. China
2. Materdicine Lab School of Life Sciences Shanghai University Shanghai 200444 P. R. China
3. Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 P. R. China
Abstract
AbstractPhotodynamic therapy (PDT) as a non‐invasive strategy shows high promise in cancer treatment. However, owing to the hypoxic tumor microenvironment and light irradiation‐mediated rapid electron–hole pair recombination, the therapeutic efficacy of PDT is dramatically discounted by limited reactive oxygen species (ROS) generation. Herein, a multifunctional theranostic nanoheterojunction is rationally developed, in which 2D niobium carbide (Nb2C) MXene is in situ grown with barium titanate (BTO) to generate a robust photo‐pyroelectric catalyst, termed as BTO@Nb2C nanosheets, for enhanced ROS production, originating from the effective electron–hole pair separation induced by the pyroelectric effect. Under the second near‐infrared (NIR‐II) laser irradiation, Nb2C MXene core‐mediated photonic hyperthermia regulates temperature variation around BTO shells facilitating the electron–hole spatial separation, which reacts with the surrounding O2 and H2O molecules to yield toxic ROS, achieving a synergetic effect by means of combinaterial photothermal therapy with pyrocatalytic therapy. Correspondingly, the engineered BTO@Nb2C composite nanosheets feature benign biocompatibility and high antitumor efficiency with the tumor‐inhibition rate of 94.9% in vivo, which can be applied as an imaging‐guided real‐time non‐invasive synergetic dual‐mode therapeutic nanomedicine for efficient tumor nanotherapy.
Funder
Shanghai Shuguang Program
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献