Nanoheterojunction Engineering Enables NIR‐II‐Triggered Photonic Hyperthermia and Pyroelectric Catalysis for Tumor‐Synergistic Therapy

Author:

Zhang Shan1,Wu Lina1,Shi Wenqiang1,Qin Junchang1,Feng Wei2,Chen Yu2ORCID,Zhang Ruifang3

Affiliation:

1. Department of Ultrasound The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 P. R. China

2. Materdicine Lab School of Life Sciences Shanghai University Shanghai 200444 P. R. China

3. Department of Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 P. R. China

Abstract

AbstractPhotodynamic therapy (PDT) as a non‐invasive strategy shows high promise in cancer treatment. However, owing to the hypoxic tumor microenvironment and light irradiation‐mediated rapid electron–hole pair recombination, the therapeutic efficacy of PDT is dramatically discounted by limited reactive oxygen species (ROS) generation. Herein, a multifunctional theranostic nanoheterojunction is rationally developed, in which 2D niobium carbide (Nb2C) MXene is in situ grown with barium titanate (BTO) to generate a robust photo‐pyroelectric catalyst, termed as BTO@Nb2C nanosheets, for enhanced ROS production, originating from the effective electron–hole pair separation induced by the pyroelectric effect. Under the second near‐infrared (NIR‐II) laser irradiation, Nb2C MXene core‐mediated photonic hyperthermia regulates temperature variation around BTO shells facilitating the electron–hole spatial separation, which reacts with the surrounding O2 and H2O molecules to yield toxic ROS, achieving a synergetic effect by means of combinaterial photothermal therapy with pyrocatalytic therapy. Correspondingly, the engineered BTO@Nb2C composite nanosheets feature benign biocompatibility and high antitumor efficiency with the tumor‐inhibition rate of 94.9% in vivo, which can be applied as an imaging‐guided real‐time non‐invasive synergetic dual‐mode therapeutic nanomedicine for efficient tumor nanotherapy.

Funder

Shanghai Shuguang Program

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3