Deep‐Learning‐Assisted Neck Motion Monitoring System Self‐Powered Through Biodegradable Triboelectric Sensors

Author:

Sun Fengxin1,Zhu Yongsheng1,Jia Changjun1,Wen Yuzhang1,Zhang Yanhong2,Chu Liang2ORCID,Zhao Tianming3,Liu Bing4,Mao Yupeng15

Affiliation:

1. Physical Education Department Northeastern University Shenyang Liaoning 110819 China

2. Institute of Carbon Neutrality and New Energy and School of Electronics and Information Hangzhou Dianzi University Hangzhou Zhejiang 310018 China

3. State Key Laboratory of Robotics Shenyang Institute of Automation Chinese Academy of Science Shenyang Liaoning 110016 China

4. Criminal Investigation Police University of China Shenyang Liaoning 110035 China

5. School of Strength and Conditioning Training Beijing Sport University Beijing 100084 China

Abstract

AbstractIn the new era of artificial intelligence (AI) and the Internet of Things (IoT), big data collection and analysis for intelligent sports are of great importance in monitoring human health. Herein, naturally, biodegradable triboelectric nanogenerators (NB‐TENGs) are developed based on low‐cost, recyclable, and environmentally friendly corn bracts, which are further applied in neck motion recognition. Three NB‐TENGs are integrated into an elastic collar to create a neck‐condition monitoring triboelectric sensor (NCM‐TS). An intelligent behavioral monitoring system is achieved by combining NCM‐TS with a deep learning model, which allows the recognition of four types of neck motion with an average accuracy of 94%. The developed neck motion monitoring sensor has broad potential applications in sports health monitoring, rehabilitation training, and healthcare.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3