Colossal Barocaloric Effect in Encapsulated Solid‐Liquid Phase Change Materials

Author:

Shuang Jiayi1,Qin Mulin1,Jia Mohan1,Shen Zhenghui1,Wang Yonggang1ORCID,Zou Ruqiang1

Affiliation:

1. School of Materials Science and Engineering Peking University Beijing 100871 China

Abstract

AbstractBarocaloric cooling as an emerging cooling technology offers an eco‐friendly alternative to traditional vapor compression refrigeration. Research on barocaloric materials primarily concentrates on solid–solid phase change materials (PCMs), among which plastic crystals exhibit colossal barocaloric effect. Solid‐liquid PCMs such as paraffin also exhibit giant barocaloric effect, however, their potential is often overshadowed by leakage issues. In this work, a strategy is demonstrated by encapsulating solid‐liquid PCMs into porous carbon matrixes to generate a large family of colossal barocaloric materials. In practice, by orthogonally combining paraffins with encapsulation matrixes like graphene foam, carbon nanotube foam, and carbon foam, it can be obtained composites that work without leakage issues. The significant advantage is their colossal barocaloric effect with the highest entropy value up to 570 J K−1 kg−1 in paraffin‐20@graphene foam. Moreover, the composites possess thermal conductivity up to 89.9 W m−1 K−1 in paraffin‐20@carbon foam, and tunable working temperature in the range of 270—330 K. Most importantly, this strategy, demonstrated with 5 solid‐liquid PCMs and 3 encapsulation matrixes in this work, is just the beginning. Further exploration with more materials can develop a huge family of encapsulated solid‐liquid PCMs with colossal barocaloric performance for modern cooling technology.

Funder

National Natural Science Foundation of China

Major Program of National Fund of Philosophy and Social Science of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3