Polyanion‐Induced Single Na‐Ion Polymer Electrolytes for Ultra‐Stable Sodium Metal Batteries

Author:

Dong Xiaorong123,Zhang Yan123,You Zichang123,Chen Youmei123,Wu Xiangwei12,Wen Zhaoyin123ORCID

Affiliation:

1. State Key Lab of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China

2. CAS Key Laboratory of Materials for Energy Conversion Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China

3. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

Abstract

AbstractSodium is an abundant resource standing as one of the most promising alternatives to lithium for the next generation of battery anode materials. Solid polymer electrolytes (SPEs) present a prospective choice for realizing sodium‐metal batteries. SPEs exhibit excellent interface compatibility, but the crucial bottleneck is how to achieve high ionic conductivity and Na+ transference number simultaneously. Herein, using a one‐step ion exchange method to synthesize 2‐Acrylamido‐2‐methylpropanesulfonic acid sodium salt (AMPSNa) with low dissociation energy. Subsequently, employing thermally induced free radical polymerization facilitated the bonding of AMPSNa into polymer's backbone to construct a polyanion‐induced single Na‐ion polymer electrolyte, which can effectively improve the cation freedom, realize low potential barrier sodium‐ion migration, thereby constructing a stable electrolyte/Na anode interface. SPE exhibits high ionic conductivity of 4.3 × 10−4 S cm−1 at room temperature and Na+ transference number of 0.82. The AMPSNa‐rich vesicular surface of the SPE anchors to the sodium surface, providing a 3D Na+ transport channel and inducing the formation of a F, O, and N enriched solid‐electrolyte interphase to inhibit dendrite growth. The highly protective interface also leads to outstanding rate performance in Na||Na3V2(PO4)3 cell, proficiently sustaining over 1300 cycles at 4 C with a high capacity retention of 94.7%.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3