Affiliation:
1. School of Physics and Electronics Hunan University Changsha 410082 China
Abstract
AbstractNaF‐rich electrode–electrolyte interphases play crucial roles in determining the cycling stability of sodium metal batteries (SMBs) because of their electronic insulation and mechanical stability. In this work, perfluorobenzene (PFB) is proposed as the additive to contribute the formation of NaF‐rich solid electrolyte interphases (SEI). PFB at the periphery of the solvation layer can pull out a part of the EC with the lowest solvation energy by Van der Waals forces, thus allowing more to participate in the Na+ solvation layer and form an anion‐aggregated solvation sheath, thus promoting the decomposition of to produce NaF. In addition, PFB has a higher highest occupied molecular orbital and lower lowest unoccupied molecular orbital energy level, which also preferentially decomposes to produce NaF at both electrodes. Benefiting from the intensified NaF ratio in SEI, the Na||Na symmetric cells with such an electrolyte achieves a superior cycling life over 350 h at 1 mA cm−2, and the Na||Na3V2(PO4)2O2F batteries also realize ultrahigh cycling performance with 88.8% capacity retention after 500 cycles.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献