Affiliation:
1. Department of Chemical Engineering Imperial College London London SW7 2AZ UK
2. West China School of Basic Medical Sciences & Forensic Medicine Sichuan University Chengdu 610041 China
3. Jinfeng Laboratory Chongqing 401329 China
Abstract
AbstractDiabetes is well established as a widespread, incurable, and fatal disease with glucose monitoring and tight glycaemic control vital for effective illness prevention and management. Hydrogel‐based holographic sensors serve as a low‐cost and label‐free colorimetric sensing platform, directly identifiable by the naked eye and spectroscopy for quantitative monitoring. Herein, a cost‐effective and reusable holographic glucose sensor is developed via single pulse UV‐induced dual‐photopolymerization of boronic acid functionalized hydrogels for point‐of‐care (POC) diagnosis. Computational modeling of holographic sensors response is conducted following Braggs law alongside the study of fabrication parameter optimization and sensor swelling dynamics. Fabrication conditions, responsive and interference hydrogel compositions of holographic sensors are investigated to improve response time, sensitivity in urine (13.03 nm mmol−1 L−1), limit of detection (0.06 mmol L−1), and reusability. Photolithographic patterning of hydrogel‐based holographic sensors permits the inscription of additional information into the sensors for qualitative measurement. Selectivity, reversibility, and continuous monitoring of urine samples are conducted over a physiological glucose concentration range (0.0–9.4 mmol L−1) to demonstrate the viability for diabetic risk identification. The simple incorporation of glucose sensors in a reusable urinary analysis prototype is validated in human urine, showing potential for POC to reduce patient dependency on invasive diabetic monitoring procedures.
Funder
Engineering and Physical Sciences Research Council
Fundamental Research Funds for the Central Universities
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献